
Complexity measures from interaction structures

T. Kahle,1,* E. Olbrich,1 J. Jost,1,2 and N. Ay1,2

1Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, D-04103 Leipzig, Germany
2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA

�Received 13 June 2008; published 2 February 2009�
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complex dynamical regimes.
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I. INTRODUCTION

In this paper we study a notion of complexity based on
the interaction among parts of a system. This is one of the
first and most natural choices and has been considered sev-
eral times. Doing so, we will pursue a geometric approach
going back to the works of Amari �1,2�. In statistical physics,
for example, the complexity of a model is specified by the
order of interaction. First, one considers the free theory with
no interaction and, as the next approximation, a theory of the
pair interaction. That means that there exists an energy func-
tion H, assigning to each state of the world x a real number
H�x� such that the more probable states have a lower energy.
If this function has, using a suitable expansion into polyno-
mials, only terms of order 2, one speaks of a pair interaction.
The probability to find the world in state x at temperature T
is given by the Gibbs distribution

P�x� =
e−�H�x�

Z���
,

where k denoting Boltzmann’s constant and � is the inverse
temperature 1

kT . By

Z��� ª �
x

e−�H�x�,

we denote the partition function, which is a normalization.
In this work, we study a complexity measure that incor-

porates the idea to quantify the amount of pairwise, triple-
wise, etc., interactions in a rigorous way. We do so by using
the exponential families of k-interactions, which will be de-
fined in Sec. II. In this context, a k-interaction is an interac-
tion between k random variables. They can stand for k dif-
ferent particles in the spatial case, one variable in k time
steps, or a mixture of both. Using the notion of distance from
such an exponential family, we can quantify the amount of
k-wise interaction that cannot be explained by a �k−1�-wise
interaction. This allows us to quantify complexity. We ex-
plore this concept using two examples: symbolic dynamics
of coupled-map lattices and cellular automata �CA�. For
coupled-map lattices we focus on spatial interactions. Still,
the temporal and spatiotemporal features can be studied

analogously as we will see for CA. Our approach quantifies
all interactions in a system. It does not necessarily refer to
any neighborhood structure; any possible subsystem can con-
tribute to this interaction. Allowing every subsystem, not
necessarily local, to interact is motivated by possible appli-
cations such as, for example, the identification of positions in
the genome that carry a high information content. Interacting
regions in the genome are not necessarily located spatially
close to each other. For example, the arrangement of the
chromosome in space can bring sequentially distant sites into
spatial proximity and thereby enable regulatory interactions.

The paper is organized as follows. In Sec. II we introduce
the necessary concepts from information theory and define
our model systems. We give details on the models and nu-
merical methods in Sec. III, and in Sec. IV we give the
results. Section V contains concluding remarks.

II. INFORMATION THEORY

In this section we introduce exponential families of prob-
ability measures, the Kullback-Leibler �KL� divergence, and
other notions. Throughout the whole paper, the set of states
of the system is of compositional structure. That means, for
each site index v in a finite set Vª �1, . . . ,N�, we have a
finite configuration space Xv. The set of all possible configu-
rations is

XV ª �
v�V

Xv

and likewise for each subset A�V, XAª�v�AXv. Every
real-valued function on the set XV can be seen as an element
of the vector space:

RXV
ª �f:XV → R� .

As �XV� is finite, this space is isomorphic to Rn with n
= �XV�. We will therefore call elements in RXV vectors or
functions without preference.

A. Families of probability measures

We now study probability distributions on the set XV.
Naturally, these are also elements of RXV. Consider

P�XV� ª 	P � RXV:P�x� � 0, �
x�XV

P�x� = 1
 ,

the probability measures on the set XV. Due to the composi-
tional structure, these probability measures are in fact only*kahle@mis.mpg.de
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joint probabilities of a set of random variables �Xv :v�V�,
where Xv takes values in Xv. P�XV� has the geometrical
structure of a ��XV�−1�-dimensional simplex. For P
�P�XV�, we call

supp�P� ª �x � XV:P�x� � 0�

the support of P. Then the probability distributions with full
support are denoted

P�XV� ª �P � P�XV�:P�x� � 0, ∀ x � XV� .

The notation is justified as P�XV� is the closure of P�XV�.
Example 1. We consider the example V= �1,2� in the bi-

nary case—i.e., X1=X2= �0,1�. We have XV= �0,1�2

= ��00� , �01� , �10� , �11��, and RXV is just R4. The set of prob-
ability measures P�XV� is a three-dimensional tetrahedron

��p00,p01,p10,p11� � R�0
4 :p11 = 1 − p00 − p01 − p10� .

It is the set of joint probabilities of two binary random vari-
ables. The extreme points of this tetrahedron are the four unit
vectors.

For two distributions P ,Q�P�XV�, we can now define
the notion of distance by

D�P � Q� ª � �
x�XV

P�x�log2
P�x�
Q�x� if ��� holds,

� otherwise.



Here, ��� is the condition supp�P��supp�Q�. D�P �Q� is
called the Kullback-Leibler divergence or relative entropy.
Although not a metric, it is non-negative and equals zero if
and only if P�Q.

In information geometry one studies families of probabil-
ity measures—i.e., submanifolds of P�XV�. A very natural
class of such families arises if we consider the exponential
map

exp:RXV → P�XV�, f �
ef

�x�XV
ef�x� .

It acts by componentwise exponentiation and normalization.
Definition 2. Let I be a linear subspace of RXV. We define

TABLE I. Results for cellular automata; 0 stands for a value less than 10−3. I�9�– I�14� are not shown, as
they vanish.

Rule I�1� I�2� I�3� I�4� I�5� I�6� I�7� I�8�

18 2.637 3.227 0.045 0.014 0.002 0 0 0

20 2.727 2.245 0.370 0.040 0.005 0 0 0

22 0.913 0.689 0.109 0.258 0.110 0.052 0.027 0.008

30 0 0 0 0 0 0 0 0

45 0 0 0 0 0 0 0 0

50 0 13 0 0 0 0 0 0

54 0.011 3.835 0.260 2.033 0.058 0.005 0 0

90 0 0 0 0 0 0.002 0.002 0.002

110 0.224 5.390 2.987 0.048 0.013 0.001 0 0

126 0 4.040 0.422 0.132 0.007 0.002 0 0

150 0 0 0 0 0 0 0 0

TABLE II. Cellular automate 3→1 statistics with uniform
inputs.

Rule I�1� I�2� I�3� I�4�

18 0.189 0.311 0.500 0

20 0.189 0.311 0.500 0

22 0.046 0.158 0.800 0

30 0 0.189 0.811 0

45 0 0.189 0.811 0

50 0.046 0.885 0.069 0

54 0 0.189 0.811 0

90 0 0 1 0

110 0.046 0.158 0.796 0

126 0.189 0 0.811 0

150 0 0 0 1

TABLE III. Cellular automate 3→1 statistics with specific input
statistics.

Rule I�1� I�2� I�3� I�4�

18 0.757 0.451 0.635 0

20 0.822 0.403 0.535 0

22 0.260 0.135 0.908 0

30 0 0.189 0.811 0

45 0 0.188 0.812 0

50 0 3 0 0

54 0.003 0.160 0.847 0

90 0 0 1 0

110 0.059 0.241 0.804 0

126 0 0.500 1 0

150 0 0 0 1
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the exponential family EI to be the image of I under the
exponential map:

EI ª exp�I� .

Exponential families are well known in statistical science.
They have many nice properties with respect to maximum
likelihood estimation and other inference methods. For our
application we are, for a given P, interested in minimizing
the distance D�P �Q� for Q in a given exponential family. It
can be seen that this is equivalent to maximum-likelihood

estimation of P in the family E. To do so, let P̂ be the relative
frequencies of an observation. Then the log-likelihood func-

tion with respect to Q is L�P̂ ,Q�ª�x�XV
P̂�x�log2 Q�x�.

Maximum-likelihood estimation is to find a Q that maxi-
mizes this function. On the other hand, if we add to −L the

constant �with respect to Q� �x�XV
P̂�x�log2 P̂�x�, we find

− L�P̂,Q� + �
x�XV

P̂�x�log2 P̂�x� = �
x�XV

P̂�x�log2
P̂�x�
Q�x�

= D�P̂ � Q� .

Therefore a maximizer of the likelihood is a minimizer of
Kullback-Leibler distance. On the other hand, geometrically,
minimization of D�P �Q� could be interpreted as a projec-
tion, since D is a kind of distance. This view is employed in
information geometry. These projections are the key players
in the definition of our complexity measure.

In what follows, we define the concrete exponential fami-
lies that we will use in the definition of our measure. The
idea that we want to follow was first explored by Darroch et
al. �3�. It is to consider exponential families of k interactions.
First, one defines the linear space of functions depending on
only k of their arguments. After taking the exponential map
of sums of such functions, we find probability distributions
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FIG. 1. The values of I�k� for the fully connected graph. For ��0.45, the network is in the state of synchronized chaos. This is fully
captured by pair interactions; therefore, I�2� is maximal, while the I�k� for k�2 vanish. On the edge to synchronized chaos, high correlations
on different scales are detected.
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with only k interactions. For a given probability distribution,
coming from a real system, we then want to quantify its
complexity by measuring how far it is from being reducible
to a theory of k interactions.

B. Interaction spaces

We exploit the compositional structure of XV to define the
notion of kth-order interactions.

For any given A�V, we write x�XV as x= �xA ,xV\A�, i.e.,
we distinguish between components in A and outside A.
Then we define IA to be the subspace of functions that do not
depend on the configurations outside A:

IA ª �f � RXV:f�xA,xV\A� = f�xA,xV\A� � for all

xA � XA,xV\A,xV\A� � XV\A� .

Using these spaces as building blocks, one can define the
interaction space corresponding to interactions between k ar-
bitrary units:

Ik ª span
A�V,�A�=k

IA,

i.e., just the span of all the vectors on the right-hand side.
Associated with each of the interaction spaces is an exponen-
tial family Ekªexp�Ik�. The interaction spaces are included
in each other: I1�I2� ¯ �IN; therefore, we have defined
a hierarchy of exponential families:

E1 � E2 � . . . � EN.

This hierarchy was studied in �1,4�. It has found various
applications in the theory of neural networks. The correspon-
dence with the notions of statistical physics is as follows: A
vector f �Ik corresponds to an energy which has only k
interactions, but no higher interactions. It gives rise to a
probability distribution

P�x� =
ef�x�

Z
� Ek.

Vice versa, every P in, for example, E2 has a �nonunique�
representation as
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FIG. 2. The values of I�k� for the circle graph. The inset shows the parameter region �� �0.46,0.49�.
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P�x� = �
A�V:�A�=2

�A�x� =
1

Z
exp� �

A�V:�A�=2

fA�xA�� ,

where the energy can be written with pair interactions only.
Note that EN, corresponding to all functions, is P�XV�. In

general, in the image of the exponential map, one has only
distributions with full support. Probability zero corresponds
to infinite energy, which is only achievable by limits of se-
quences of probability measures in an exponential family. It
is an open question which of the possible support sets are
achievable by such limit probability measures in a given ex-
ponential family. This question is connected with the face
structure of a convex polytope, the so-called marginal poly-
tope. See �5,6� for details. For our application one can just
pass to the closure �in Rn� of the exponential family. In prac-

tice, if P̂ is the distribution given by the relative frequencies
observed in an experiment, we can compute the minimizer of
the Kullback-Leibler distance to an exponential family using
the iterative proportional fitting algorithm from �7�. How-
ever, the complexity of the algorithm makes it unfeasible for
values of �XV��106.

Now we are about to introduce our complexity measures.
They are based on the notion of distance to an exponential
family E. We define

D�P � E� ª inf
Q�E

D�P � Q� .

One can show that D�P �E� is continuous with respect to P
�P�XV�. Given two exponential families E�F, one has

D�P � E� − D�P � F� � 0.

We now use differences like these as components of a vector-
valued complexity measure.

C. Complexity measures

1. Definition

For a given P�P�XV�, we define a vector-valued com-
plexity measure I�P�ª (I�1��P� , . . . , I�N��P�) with components

I�k��P� ª D�P � Ek−1� − D�P � Ek�, k = 1, . . . ,N .

In the next section we will argue for the choice and discuss
properties.

2. Properties and interpretation

The main idea is that I�k� quantifies those dependences
between k nodes that are not captured by interactions be-
tween smaller subsets of nodes. However, this interpretation
is a posteriori in the following sense: Consider an open sys-
tem, such as an infinite CA. Even if locally only low-order
interaction takes place, as the system evolves in time, we
might find higher-order correlations. When we speak of
higher-order interactions here, we mean an interpretation of
higher correlations by a model of higher-order interactions in
a closed system.

We look at examples for our quantities. Consider first a
distribution P which factors over the units, i.e., it has a rep-
resentation

P�x� = �
v�V

Pv�xv� ,

where Pv are the marginals on single units. In this case P is
an element of the closure E1 of the exponential family E1 and
therefore I�k��P� equals zero for k�2.

For higher interactions a similar statement is true. One has
that P�Ek if P admits a factorization as

P�x� = �
A:�A�=k

�A�xA� , �1�

while here the converse is not true. A given P�Ek \Ek need
not have this structure. In �1� the functions �A have the prop-
erty to depend on their argument only through the part in A:
xA. In this general case, the �A are not the marginals. If P
�Ek, then I�l�=0 for l�k.

Consider next a distribution in the synchronized case, i.e.,
from the value of one unit v, all the other units are deter-
mined. Take as an example the distribution P with
P�0¯0�= P�1¯1�= 1

2 and P�x�=0 for all other elements. It
can be seen that these distributions lie in the closure of E2,
since, loosely speaking, by pair interactions this behavior can
be explained. To do so let the second, third, etc., unit copy
the value of the first unit, then the synchronized behavior is
“constructed” using only conditions on pairs. Since P�E2,
we have that D�P �Ek�=D�P �E2�=0 for all k�2 and there-
fore the only nonvanishing component of I�P� is I�2�.

Another extreme case is given by the parity function. Let
P be the uniform distribution on the set of elements
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Y ª 	x � XV:x1 = �
i=2

N

xi mod 2
 .

Y is the set of all configurations with even parity. It can be
seen that for this distribution I�N� is maximal, while all other
components vanish. This is due to the fact that every choice
of N−1 units is independent under P, while there is total
�functional� dependence between all the N units. It can be
seen that even the reverse statement is true. We elaborate a
bit on this. Let g : �0,1�N−1→ �0,1� be a binary function on
the N−1 strings. Define the set

Yg ª �x � XV:x = „g�y�,y…,y � �0,1�N−1� .

This means that Yg is formed by those strings where the
nodes 2 , . . . ,N are chosen freely and the first node has the
value of g. Let P be the distribution that is uniform on the set
Yg. Then it can be shown that if IN�P��0, then either g is the
parity function or 1+g mod 2 is the parity function.

The vector I has a natural correspondence to multi-
information �or integration as it is termed in �8��. Multi-
information is a generalization of mutual information and is
defined as

M�P� ª �
i�V

Hi�Pi� − H�P� ,

where H�P�ª−�x�XV
P�x�log2 P�x� is the entropy of

P and Pi is the �i�-marginal of P. Then Hi�Pi�
ª−�x�Xi

Pi�x�log2 Pi�x� is the marginal entropy in the unit i.
Multi-information measures the distance of a distribution
from independence of the units. It allows a decomposition as

M�P� = D�P � E1� = �
k=2

N

I�k��P� .

See �9� for these complexity measures, their properties, and
the relation with Tononi-Sporns-Edelman �TSE� complexity
�8�.

In �4�, it is shown that the maximizer of multi-information
are contained in the closure of the exponential family E2 and
therefore have the I vector concentrated in I�2�.

In the following we compare our approach with the one of
�10�. There the author distinguishes a chemical contrast,
which corresponds to our I�1�. It quantifies the information
that is contained in a sequence due to the average density of
zeros differing from 1

2 . Then, quantities km, the correlational
contrasts, were defined. These are in fact conditional mutual
informations, which measure the difference of the actual dis-
tribution to a Markov approximation. They also appear in the
effective measure complexity �11�, which can be expressed
as a weighted sum over these quantities. The relation to our

measures is that km=0 implies I�m�=0. This can be under-
stood from the fact that a distribution that has a Markov
property with respect to �m−1�-marginals will be represent-
able by �m−1�-interactions. On the other hand, a distribution
that is representable by pair interactions does not necessarily
admit a Markov representation as the example

P�x� =
1

Z
exp�c1x1x2 + c2x2x3 + c3x3x1�

of a triangle with no three-way interaction shows. Therefore
our measures give a finer view of the interaction structure.

Having identified “noncomplex” behaviors with extreme
values of the components of I�P�, we now look for dynami-
cal systems where I is not concentrated in one component,
because if several I�k� contribute, interactions on different
scales coexist. This then could indicate complex behavior.
We will next introduce our model systems where we try to
find complex behavior in the above sense.

III. MODELS AND METHODS

A. Model systems

1. Cellular automata

A possible natural choice for a model system is one-
dimensional �binary� cellular automata. They produce dis-
crete output and are therefore ideally suited for our method.
Furthermore, CA were introduced by Wolfram �12� as para-
digmatic models to study complexity. In this work, we re-
strict ourselves to some of the 256 elementary binary CA
studied by Wolfram �13�. For these, starting from a configu-
ration x�t�� �0,1�N, the next configuration x�t+1� at a site i is
computed as

xi
�t+1� = f�xi−1

�t� ,xi
�t�,xi+1

�t� �

for some function f : �0,1�3→ �0,1�. Typically one chooses
periodic boundary conditions, i.e., xN+1 is identified with x1.
There exist exactly 256 functions �0,1�3→ �0,1�, each char-
acterized by its binary vector of values in �0,1�8. These vec-
tors correspond to binary representations of integers smaller
than 256, and the rules get numbered accordingly.

In this simple model, only the next neighbors of node i
influence this particular node. A priori, there are 88 elemen-
tary CA modulo the inversion and reflection symmetry. Fur-
thermore, there are trivial cases like rule 0, etc., such that the
number of “interesting” rules is smaller. In this paper, we
pick out some specific rules that have found attention in the
literature. Specifically, we study the rules 18, 20, 22, 30, 45,
50, 90, 110, 126, and 150.

2. Coupled map lattices

Our second model system is symbolic dynamics of
coupled-map lattices. Let again V= �1, . . . ,N� denote the set
of node indexes. Assume we are given a connection structure
between the nodes, specified by a graph G with vertices
V�G�=V. By abuse of notation, the structure of the network
is given by the symmetric adjacency matrix G= �gij�i,j=1,. . .,N
� �0,1�N�N of the graph. We study the discrete time case

FIG. 4. A snapshot of the highly regular binary symbolic dy-
namics of the circle graph at �=0.476. Each row shows one node
over time. White spots indicate the value 0, black squares 1.

KAHLE et al. PHYSICAL REVIEW E 79, 026201 �2009�

026201-6



t=0,1 ,2 , . . ., and every node i�V carries a real value xi�t�
� �0,1�. These values get updated simultaneously according
to the so-called coupled-tent-map rule �14�

xi�t + 1� = ��
j

1

ki
gij f„xj�t�… + �1 − ��f„xi�t�… ,

where ki is the number of neighbors of node v and f : �0,1�
→ �0,1�, defined by

x � f�x� = �2x if 0 
 x 

1

2
,

2�1 − x� if
1

2

 x 
 1,
 �2�

is the tent map on the unit interval. Tent map lattices are a
well-established model to study synchronization and pattern
formation in spatially extended systems �15,16�.

We will study binary symbolic dynamics of a coupled-
tent-map network �17,18�. For each node we consider Xi
ª �0,1� and for every A�V we have XA= �0,1��A� as in Sec.
II. Then the configuration space of the symbolic dynamics is
XV= �0,1�N, the space of binary sequences of length N. To
every real-valued dynamics xi�t� of node i, we consider the
symbolic dynamics

si�t� = 	0 if 0 
 xi�t� 
 x*,

1 if x* � xi�t� 
 1,



where x*� �0,1� is a given value. We obtain a global con-
figuration of symbols s�t�= (s1�t� , . . . ,sN�t�)�XV. Our aim is
to utilize this symbolic time series in order to evaluate the
complexity of the full dynamics. Assuming that a dynamical
system has arrived in a stationary state, it will produce a
stationary distribution on the set of symbolic strings. The
method we propose is to capture this stationary distribution
P and evaluate the complexity I�P�. We will call a dynamics
complex if it exhibits interactions of different orders at the
same time.

B. Simulation and computation

1. Cellular automata

As our computational power limits us to analyzing short
sequences, we cut pieces of length 14 from CA of length
20 000. These were iterated for 106 time steps, starting from
an independent and identically distributed �i.i.d.� initial con-
dition. To gain more insight into the structure of our mea-
sures, we furthermore evaluate it for the “interaction cone”
corresponding to a single time step. To do so we take all
binary strings of length 3 and compute the value of the CA

on these strings. We then append the output as the fourth
digit to the input string and compute I�1� , . . . , I�4� on the uni-
form distribution on these strings. Of course, in the running
CA one has to consider the influence of the stationary distri-
bution on the inputs. To measure this influence we also
evaluate the elementary 4-strings when the input is sampled
with the stationary distribution.

2. Coupled-map lattice

To simulate the coupled-map lattice, one has to specify a
graph. For our simulations, we use a fully connected graph
�“globally coupled network”� and a circle graph �“next-
neighbor coupling”� of ten nodes each. We initialize the net-
works by setting the xi�0� to independently uniformly distrib-
uted random values in the real interval �0, 1�. The dynamics
generates two time series, the real-valued one x�t�
= (x1�t� , . . . ,xN�t�) and, using x*= 1

2 , the symbolic one s�t�
= (s1�t� , . . . ,sN�t�). In the uncoupled case, the value x*= 1

2
gives the generating partition. It makes the symbolic time
series most informative about the true time series. We dis-
card the symbols during a transient time, assuming that after
the transient time �chosen here as 106 time steps�, the system
is in a stationary state. Treating the symbolic time series as N
realizations of a random variable with probability distribu-
tion P�P�XV� on the space of symbols, we compute I�P�
for this P.

We also experimented with different values of the bound
x*, but it turned out that this does not change the qualitative
behavior. The value x*= 2

3 has received some attention as
synchronization of the real-valued dynamics can be detected
from the symbols �19�. For our measures, however, I does
not seem to depend on the choice of x* in such an essential
manner.

C. Computation of I(k)

As we have seen in Sec. II A, computing an information
projection, i.e., a minimizer of D�P �Q�, for P given and

FIG. 5. A snapshot of the weakly coupled chaotic dynamic of
the circle graph at �=0.04. Each row shows one node over time.
White spots indicate the value 0, black squares 1.

FIG. 6. A snapshot of the complex dynamic of the circle graph
at �=0.482. In the top the activity of node 4 is plotted together with
the average activity over all nodes. One can observe that for short
periods of time synchronization effects occur—for instance, be-
tween t=30 and t=40 node 4 is almost constant while the average
also fluctuates less. Below, the symbolic dynamics, with black as 1,
white as 0, of all ten nodes is shown. The synchronization is visible
here too as the pattern after t=35 is very regular.
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Q� Ē, can be written as computing a maximum-likelihood
estimation in some discrete statistical model. This estimation
can be solved analytically only for some very simple models,
such as E1. Nevertheless, for the general case good iterative
algorithms exist. These go back to Kullback �20,21�. We
have reimplemented the algorithm in parallel in the program
CIPI which is freely available �22�. As the projections can be
computed, the determination of I�k� is merely a subtraction of
two KL divergences.

IV. RESULTS

A. Cellular automata

In Table I the experimental values for sequences of length
14, cut from large cellular automata, are given. Then in
Tables II and III the values of the I-vector for elementary
steps of each of the automata are printed. We distinguish
between the uniform input and the true input statistic
sampled from the stationary distribution of the respective
CA.

The values in Table I represent properties of the invariant
measure of the respective CA. We confirm that rules 30, 45,
and 150 have the uniform distribution as their invariant mea-
sure; therefore, no interaction can be detected. The results for
rule 22 show that the long-range correlations, known from
�23,24�, can be detected using our measure.

In the elementary interaction cone of 3+1 elements, we
can observe the following principles: Rules 18 and 20 build
up correlations in the input, which leads to overall stronger
correlations when the stationary distribution is used. One can
also see that the outputs are not uniformly distributed, lead-
ing to a high value of I�1� when the inputs are sampled from
the stationary distribution. In the elementary time step of rule
22, a lot of triplewise interactions are detected. This property
is also found when the inputs are sampled from the station-
ary distribution. Rule 50 is a very simple rule which gener-
ates a periodic pattern of period 2. We see this represented
here as �like in the synchronized case, described in the Intro-
duction� the I-vector is concentrated in I2. When the inputs
are uniform, on the other hand, this rule has some small
correlations of three positions; these get eliminated as the
system reaches the stationary distribution. Rules 90 and 150
are additive rules that are modeled by the XOR function. Rule
150 takes XOR of every input, giving exactly the correlation
between all four digits that was described in Sec. II. Rule 90
is similar; it computes XOR of the inputs 1 and 3, leading to
only a triplewise interaction.

For rules 22, 30, and 45 there is evidence for the long-
range correlations in �25�. Here, we can distinguish rule 22
from the other two, as rules 30 and 45 still show the uniform
distribution in the outputs leading to I�1� being zero. Rule 30,
Wolfram’s “all time favorite rule,” is believed to have a high
degree of randomness. �It might actually be used as a random
number generator in Mathematica�. For us, it is not distin-
guishable from rule 45. Rule 110, which is capable of uni-
versal computation, shows no specific behavior with respect
to our measure. Rule 126 has a mirror symmetry leading to
I�2� being zero when the input is sampled uniformly. How-

ever, the stationary distribution induces a different symmetry.
This leads to an interesting statistics, which looks as follows:

p126�x� =�
1

8
for x � ��001�,�011�,�100�,�110�� ,

1

4
for x � ��000�,�111�� ,

0 otherwise.



It can be seen that the rule exactly computes XOR of inputs 1
and 3 on these configurations �which it does not do on all
configurations�. This leads to the contribution of I�3�. On the
other hand, the nonexistence of configurations �101� and
�010� can only be accomplished by additional interactions of
order 2. A comparison with rule 90 shows the nonadditive
nature of I. The exactness of the probabilities accounts for
the exact values in I. In fact, these values can be predicted
from theory.

B. Coupled tent maps

1. Fully connected graph

In Figs. 1 and 2, the values of I�1� to I�6� are plotted for the
fully connected and circle graphs, depending on the coupling
�. For k�6, the I�k� are very small and depend strongly on
the random initial condition, so that we do not evaluate them
here. Figure 3 shows the behavior of the largest Lyapunov
exponent for the two network structures. Different snapshots
of the symbolic dynamics of the circle graph are given in
Figs. 4–6.

For the fully connected graph, the nodes will be driven to
synchronized chaos if the coupling strength is high enough
�26,27�. We see this here as, for ��0.45, I is concentrated in
I�2�. It is interesting to observe that the I�k� indicate complex
dynamics taking place on the edge of synchronized regimes.
The largest Lyapunov exponent becomes smallest at �
=0.34 �but not zero or negative, which would indicate peri-
odicity�. The respective maxima of the I�k� correspond to this.
They are located at �3=0.345, �4=0.42, �5=0.355, and �6
=0.35. Also note that I�4� has at least a local maximum at the
parameter value 0.35.

2. Circle graph

The circle graph of ten nodes shows a specific “nearly
periodic” behavior for parameter values �� �0.463,0.481�.
This is a specific feature due to the symmetry of the system.
It is not present for N�10. We do not want to call the dy-
namics in that regime complex, as there is a high degree of
regularity. In the respective parameter region, the average
activity taken over all nodes is almost constant. In the sym-
bolic dynamics, two of the nodes are constant themselves
and four are periodic, while the remaining four are close to
periodicity �see Fig. 4�. Obviously, the complexity measures
detect this phenomenon, as all I�k�, k�2, drop to zero. More
interestingly, when the parameter � takes values close to
where the regularity occurs, we can observe very high values
of the I�k� for k�2. In this regime, the average activity does
not follow the one of the individual nodes, but fluctuates on
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the same scale, instead of averaging out. This indicates a
complex dynamical structure driven by higher-order correla-
tions among the nodes. See Fig. 6 for a snapshot of the
dynamics. At the onset of the synchronization, one can addi-
tionally observe “part time synchronization.” This means that
a nearly periodic state, as described above, emerges, but is
not stable. After a couple of time steps �depending on the
exact parameter value�, it dissolves again.

To understand the reason for the peak close to the periodic
phenomenon better, we investigated the transition region
closer. First, we took a very long sequence that shows tran-
sitions. Then we separated the two phases, saving them to
different files, and analyzed them separately. The result here
is that the unordered state shows the same I-vector as the
region left of the peak, while the periodic sequences, of
course, have I concentrated in I�2�, as the theory predicts. If
the two types of sequences are mixed, then higher-order cor-
relations appear, leading to the peak. This corresponds to the
more general and unsolved problem of whether the complex-
ity of a convex combination of two distributions is related to
the complexities of the individual constituents.

V. CONCLUSION

We have introduced complexity measures, suggested by
�1,9�, that quantify the interactions of k parts of a system that
cannot be explained by interaction between fewer parts of
that system. Then, after studying elementary theoretical
properties and their interpretation, we have explored the
measures in numerical studies. Using the elementary cellular
automata, one can already study the behavior of the mea-
sures in special cases. There are specific effects, such as

emergence of higher correlations, that can be found with our
method. Commonly studied quantities like correlation func-
tions capture only part of what we called I�2�. Our measures
therefore give a more global view.

Symbolic dynamics of coupled-map lattices are far less
understood from a theoretical point of view. We have shown
that using the symbolic dynamics one can detect important
dynamical properties of the underlying real-valued dynam-
ics. This is true despite the fact that only spatial correlations
are used in the computation of the I�k�. We stress the point
that our measures take as input only the statistics of the sys-
tem and make no model assumptions. They are suitable for
exploratory analysis, as is done in sequence-based genetics.
In an exploratory study one has no order parameters, as these
quantities need to be constructed from some model first.

Interestingly, we observed that complex behavior takes
place on the edge of synchronization, similar to the common
wisdom of “complex dynamics on the edge of chaos.” I�2�

plays a special role in this context. As synchronization phe-
nomena are entirely captured by pair interactions, we would
suggest to measure complexity in terms of I�k� for k�2.
There is more work to do investigating this notion of com-
plexity in different kinds of models.

Nevertheless, the universality of the results remains to be
investigated, as our system size is very small and the com-
putation of the I�k� becomes infeasible as the system grows.
Therefore, for the time being our approach is practically lim-
ited, while still conceptually appealing.
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